THEORY OF ATTRIBUTES

Q SET 1 - EXAMINE TYPE OF ASSOCIATION $\mathcal{P}g - 04$

Q SET 2 - SUMS ON YULE'S COEFFICIENT $\mathcal{P}_{g} - 06$

Q SET 3 - CONSISTENCY OF DATA Pg-14

Q SET 4 - THREE ATTRIBUTE TABLE $\mathcal{P}g - 18$

THEORY OF ATTRIBUTES

NOTATION AND TERMINOLOGY

For the sake of simplicity and convenience it is imperative to use certain symbols to represent different classes and their frequencies It is customary to use capital letters A and B to represent the presence of attributes and α and β to represent absence of attributes.

Thus ' α' = not A and ' β' = not B .

For example if A represents males then α would represent females . Similarly if B represents literates then β would represent illiterates .

Lets looks at the combination

- (AB) : number of literate males
- (A β) : number of illiterate males
- (aB) : number of literate females
- (αβ) : number of illiterate females

CONTINGENCY TABLE FOR TWO ATTRIBUTES

	В	β	TOTAL
Α	(AB)	(Αβ)	(A)
α	(αΒ)	(αβ)	(α)
TOTAL	(B)	(β)	N

$(A) + (\alpha)$	= N	(AB) + (Aβ)	= (A)	$(AB) + (\alpha B) = (B)$
(B) + (β)	= N	$(\alpha B) + (\alpha \beta)$	= (α)	$(A\beta) + (\alpha\beta) = (\beta)$

INDEPENDENT ATTRIBUTES

Let us consider two above attributes . We may be interested in finding out if these two attributes are related to each other or independent of each other

we can say that the two attributes are independent if

Proportion of male literates = proportion of female literates

(AB)	=	(αB)	
(A)		(α)	

NOTE – 1

We know that $\frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$

Therefore

NOTE – 2

$$\frac{(AB)}{(A)} = \frac{(\alpha B)}{(\alpha)} = \frac{(AB) + (\alpha B)}{(A) + (\alpha)} = \frac{(B)}{N}$$

$$\therefore \quad \frac{(AB)}{(A)} = \frac{(B)}{N}$$

(AB)	=	(A) x (B)	
		Ν	

	В	β	TOTAL
А	(AB)	(Αβ)	(A)
α	(αB)	(αβ)	(α)
TOTAL	(B)	(β)	И

then attributes A and B are independent

Lets consider again ;

$$\frac{(AB)}{(A)} = \frac{(\alpha B)}{(\alpha)}$$

$$\frac{(AB)}{(AB) + (A\beta)} = \frac{(\alpha B)}{(\alpha B) + (\alpha \beta)}$$

$$(AB)(\alpha B) + (AB)(\alpha \beta) = (AB)(\alpha B) + (A\beta)(\alpha B)$$

$$\therefore \qquad (AB)(\alpha \beta) = (A\beta)(\alpha B)$$

then attributes A and B are independent

POSITIVE AND NEGATIVE ASSOCIATION BETWEEN ATTRIBUTES

Two attributes are associated to each other if the two attributes are not independent. In such a case we say there is an association of two attributes

□ If the actual frequency of the class AB is more than the computed frequency then the two attributes are

then there is positive association between attributes A and B

If the actual frequency of the class AB is less than the computed frequency then the two attributes are said to be negatively associated

(AB) = (A) and $(A\beta) = 0$ (AB) = (B) and $(\alpha B) = 0$ then attributes A and B are said to be completely associated

then there is negative association between attributes A and B

 $\Box (AB) = 0 \quad OR (\alpha\beta) = 0$

then attributes A and B are said to be completely dissociated

YULE'S COEFFICIENT OF ASSOCITAION

The above methods fail to give us the amount of association existing between the two attributes

From the above discussion it comes to light that when the attributes are not associated or dissociated i.e

when they are independent

 $(AB) (\alpha\beta) = (A\beta)(\alpha B)$

which also implies that when there is association or dissociation between A and B

$$(AB) (\alpha\beta) \neq (A\beta)(\alpha B)$$

Hence we conclude ;

'(AB) $(\alpha\beta) - (A\beta)(\alpha B)$ ' measures the amount of association

Yule's coefficient of association quantifies the association between the two attributes and is given by

$$Q = (AB)(\alpha\beta) - (A\beta)(\alpha B)$$
$$(AB)(\alpha\beta) + (A\beta)(\alpha B)$$

	Q SET 1 - EXAMINE TYP	PE (OF ASSOCIATION
EX	AMINE FOR ATTRIBUTES A AND B ARE INDEPNDENT	[/ PO	SITIVELY ASSOCIATED / NEGATIVELY
01.	N = 100 , (A) = 60 , (B) = 50 , (AB) = 30 solution		1) $(A) \times (B)$ = $\frac{225 \times 325}{500}$ = 146.25
	1) $(A) \times (B) = \frac{60 \times 50}{100} = 30$		2) (AB) = 155 given
	2) (AB) = 30 given		3) (AB) > $(A) \times (B)$ N
	3) (AB) = $(A) \times (B)$ N		 there is positive association between attributes A and B
	4) attributes A and B are independent	05.	(AB) = 128 ;(α B) = 384 ;(A β)=24 ;($\alpha\beta$) = 72 solution
02.	N = 200, (A) = 80, (B) = 50, (AB) = 25		1) (AB)($\alpha\beta$) = 128 x 72 = 9216
	SOLUTION		2) $(A\beta)(\alpha B) = 24 \times 384 = 9216$
	1) $(A) \times (B) = \frac{80 \times 50}{200} = 20$		3) $(AB)(\alpha\beta) = (A\beta)(\alpha B)$
	2) (AB) = 25 given		4) attributes A and B are independent
	3) (AB) > $(A) \times (B)$ N	06.	$(AB) = 30$; $(\alpha B) = 120$; $(A\beta) = 90$; $(\alpha\beta) = 360$ solution
	 there is positive association between attributes A and B 		1) (AB)($\alpha\beta$) = 30 x 360 = 10800
			2) $(A\beta)(\alpha B) = 90 \times 120 = 10800$
03.	N = 500; (A) = 325; (B) = 310; (AB)= 160 solution		3) (AB)($\alpha\beta$) = (A β)(α B)
	1) $(A) \times (B) = \frac{325 \times 310}{500} = 201.5$		4) attributes A and B are independent
	2) (AB) = 160 given	07.	$(AB) = 256$; $(\alpha B) = 768$; $(A\beta) = 48$; $(\alpha\beta) = 144$

- 3) (AB) < $(A) \times (B)$ N
- 4) there is negative association between attributes A and B
- 03. N = 500 ; (A) = 225 ; (B) = 325 ; (AB)= 155
 solution
- 4) attributes A and B are independent

1) (AB) $(\alpha\beta) = 256 \times 144 = 36864$

 $= 768 \times 48 = 36864$

SOLUTION

2) (Αβ)(αΒ)

3) $(AB)(\alpha\beta) = (A\beta)(\alpha B)$

08.

Given A & B are independent attributes , N = 24 , (A) = 16 , (B) = 6 , find the ultimate class frequencies

1) since A and B are independent

$$(AB) = (A) \times (B) = 16 \times 6 = 4$$

N 24

2)

	В	β		TOTAL		
А	(AB) =	4	(Aβ) =	12	(A) =	16
α	(αB) =	2	(αβ) =	6	(α) =	8
TOTAL	(B) =	6	(β) =	18	N =	24

09.

Given A & B are independent attributes , N = 200, (A) = 100 , (B) = 140 , find the ultimate class frequencies

TOTAL

1) since A and B are independent

$$(AB) = (A) \times (B) = 100 \times 140 = 70$$

N 200

В

2)

А	(AB) =	70	(Aβ) =	30	(A) = 100
α	$(\alpha B) =$	70	$(\alpha\beta) =$	30	$(\alpha) = 100$
TOTAL	(B) =	140	(β) =	60	N = 200

Q SET 2 - SUMS ON YULE'S COEFFICIENT

- 01. 252 candidates , 140 were boys , 72 candidates were successful
 , among them 40 were boys . Obtain coefficient of association
 and comment on result
 - Solution : A = candidate is a boy

S	uccessf	ul → B		β		TOTAL
boy	А	(AB) =	40	(Aβ) =	100	(A) = 140
girl	α	(aB) =	32	(αβ) =	80	$(\alpha) = 112$
	TOTAL	(B) =	72	(β) =	180	N = 252
Q	= <u>(AB</u>)(αβ) – (A	.β)(αB)		R	ROUGH WORK

B = candidate is successful

 $= \frac{(40)(80) + (A\beta)(\alpha B)}{(40)(80) - (100)(32)}$ $= \frac{3200 - 3200}{3200 + 3200}$ = 0

Comment : attributes sex and success are INDEPENDENT

THEORY OF ATTRIBUTES

02. in a institute out of 200 students 150 were boys . In an examination 120 boys and 40 girls passed . Find Yule's coefficient of association between sex and success and comment on the result

Solution : A = student is a boy

	B = student passed the examination								
pass	β		TOTAL						
boy A	(AB) = 120	(Aβ) =	30	(A) = 150					
girl α	$(\alpha B) = 40$	(αβ) =	10	(α) = 50					
TOTAL	(B) = 160	(β) =	40	N = 200					
$Q = \frac{(AE)}{(AE)}$ $= \frac{(12)}{(12)}$ $= \frac{12}{12}$	$\frac{(\alpha\beta)}{(\alpha\beta)} - (A\beta)(\alpha\beta)$ $\frac{(\alpha\beta)}{(\alpha\beta)} + (A\beta)(\alpha\beta)$ $\frac{(\alpha\beta)}{(\alpha\beta)} - (40)(30)$ $\frac{(\alpha\beta)}{(\alpha\beta)} - (4)(3)(3)$ $\frac{(\alpha\beta)}{(\alpha\beta)} - (4)(3)(3)$ $\frac{(\alpha\beta)}{(\alpha\beta)} - (4)(3)(3)$ $\frac{(\alpha\beta)}{(\alpha\beta)} - (4)(3)(3)$ $\frac{(\alpha\beta)}{(\alpha\beta)} - (4)(3)(3)(3)$ $\frac{(\alpha\beta)}{(\alpha\beta)} - (4)(3)(3)(3)(3)$ $\frac{(\alpha\beta)}{(\alpha\beta)} - (4)(3)(3)(3)(3)(3)$ $\frac{(\alpha\beta)}{(\alpha\beta)} - (4)(3)(3)(3$		7	ROUGH WORK					
= ()								

Comment : attributes sex and success are INDEPENDENT

Solution : A = student is married

Out of 200 students that appeared for M.B.A examination , 80 were married . Among 60 students who failed , 24 were married . Find the coefficient of association between marriage and failure in the examination . Comment on your result

B = student failed the examination						
failed	→ B		β		TOTAL	
married A	(AB) =	24	(Aβ) =	56	(A) = 080	
α	(αB) =	36	(αβ) =	84	(α) = 120	
TOTAL	(B) =	60	(β) =	140	N = 200	

ROUGH WORK

Q	=	$(AB)(\alpha\beta) - (A\beta)(\alpha B)$
		$(AB)(\alpha\beta) + (A\beta)(\alpha B)$
	=	(24)(84) - (56)(36)
		(24)(84) + (56)(36)
	=	2016 - 2016
		2016 + 2016
	=	0

Comment : attributes marriage and failure are INDEPENDENT

THEORY OF ATTRIBUTES

04. 400 students , 160 were married . Among 120 students who failed , 48 were married . Find coefficient of association between attributes marriage and failure

B = student failed the examination

Solution : A = student is married

failed	β → Β	β		TOTAL
married _A	(AB) = 48	(Aβ) =	112	(A) = 160
α	(αB) = 72	(αβ) =	168	$(\alpha) = 240$
TOTAL	(B) = 120	(β) =	280	N = 400
$Q = \frac{(A)}{(A)}$ $= (4)$	xB)(αβ) – (Αβ)(αB xB)(αβ) + (Αβ)(αB 8)(168) – (112)(7)) 2)	R	OUGH WORK
(4 = <u>8</u> 8	8)(168) + (112)(7 064 - 8064 064 + 8064	2)		

Comment : attributes marriage and failure are INDEPENDENT

- 7 -

- 05. A & B represent attributes ' going for morning walk & being physically fit '. Compute Yule's coefficient N = 200; (A) = 120; (B) = 100; (AB) = 80
 - Solution : $A \equiv$ going for morning walk

 $B \equiv physically fit$

	В		β		TOTAL	
A	(AB) =	80	(Aβ) =	40	(A) =	120
α	(αB) =	20	$(\alpha\beta) =$	60	(α) =	80
TOTAL	(B) =	100	(β) =	100	N =	200

Q

=	$\frac{(AB)(\alpha\beta) - (A\beta)(\alpha B)}{(AB)(\alpha\beta) + (A\beta)(\alpha B)}$	ROUGH WORK
=	$\frac{(80)(60)}{(80)(60)} + \frac{(40)(20)}{(80)(20)}$	
=	$\frac{4800 - 800}{4800 + 800}$	
=	4000 5600	3. 6021 - <u>3. 7482</u> AL 1. 8539
=	0.71	0. 7144

Comment : there is a good positive association between attributes

Morning walk & Physical fitness

THEORY OF ATTRIBUTES

06. Calculate Yule's coefficent of association between the weight of children and their respective economic condition

	Poor children	Rich children
Below normal weight	75	23
Above normal weight	5	42

	B ≡_	child is	poor		
	В		β		TOTAL
А	(AB) =	75	(Aβ) =	23	(A) = 98
α	$(\alpha B) =$	5	$(\alpha\beta) =$	42	$(\alpha) = 47$
TOTAL	(B) =	80	(β) =	65	N = 145
$= \frac{(AB)}{(AB)}$ = (75) (75) $= \frac{315}{315}$ = 303	$\frac{1}{(\alpha\beta)} - (A) + (A)$.β) (αΒ) .β) (αΒ) 3) (5) 3) (5) - 	294	F	LOG CALC. 3. 4821 <u>- 3. 5139</u> AL 1. 9682 0. 7144
326	55				

high positive association between attributes ' weight Comment:

of children & their respective economic condition'

Q

JKSC - FYJC 2018 - 19 - PAPER - II

07.

	Not attacked	Attacked
Inoculated	431	5
Not inoculated	291	9

Examine the effect of inoculation in controlling hepatitis

Solution : A = inoculated

	B = not attacked by Hepatitis					
	В		β		TOTAL	
А	(AB) =	431	$(A\beta) =$	5	(A) = 436	
α	(αB) =	291	$(\alpha\beta) =$	9	$(\alpha) = 300$	
TOTAL	(B) =	722	(β) =	014	N = 736	

Comment: there is significant positive association between inoculation and not attacked by Hepatitis. Hence we can say inoculation was effective in controlling hepatitis

THEORY OF ATTRIBUTES

- 08. 400 saplings were planted, 210 got flowered. Fertilizers were applied to 100 of which 85 got flowered . Discuss whether application of fertilizers is useful in flowering of plants
 - Solution : $A \equiv$ sapling got flowered

	B = fertilizer applied to sapling							
fertiliz	β		TOTAL					
flowered A	(AB) = 85	(Aβ) =	125	(A) = 210				
α	$(\alpha B) = 15$	(αβ) =	175	$(\alpha) = 190$				
TOTAL	(B) = 100	(β) =	300	N = 400				
$Q = \frac{(AE)}{(AE)}$	$(\alpha\beta) - (A\beta)(\alpha)$ $(\alpha\beta) + (A\beta)(\alpha)$ (175) - (125)(B) B) 15)		ROUGH WORK				
(85)(175) + (125)(15)		LOG CALC. 3. 1139				
= 14	875 + 1875			<u>- 3. 2240</u> AL 1. 8899 0. 7761				
$=$ $\frac{13}{16}$	$\frac{000}{750} = 0$).7761						

Comment: there is a good positive association between application of fertilizers and flowering of plants . Hence we can say application of fertilizers is useful in flowering of plants

09. 250 candidates appear for exam . 75 succeeded . 44 have received special coaching and out of them 25 were successful . Using Yule's coefficient of association , discuss whether special coaching is effective or not

Solution : $A \equiv$ candidate succeeded

	B ≡	candid	late rece	ived spl	. coachir	ng
coach	ng B		β		τοτ	AL
succeeded A	(AB) =	25	(Aβ) =	50	(A) =	75
α	(αB) =	19	(αβ) =	156	(α) =	175
TOTAL	(B) =	44	(β) =	206	N =	250
$Q = \frac{(AB)}{(AB)} = \frac{(25)}{(25)} = \frac{390}{390} = \frac{295}{390}$	$\frac{1}{(\alpha\beta)} - (A) + (A)$	$\frac{(\beta)(\alpha B)}{(\alpha B)} = \frac{(\alpha B)}{(\alpha B)} = (\alpha B)$	82		ROUGH V LOG CAL 3. 46 <u>- 3. 68</u> AL 1. 78 0. 60	с. 98 <u>57</u> 41 82
485	0			I		

Comment : there is good positive association between success and special coaching . Hence special coaching is effective

THEORY OF ATTRIBUTES

10. Find Yule's coefficient of association between literacy and unemployment from the following observation .

" total adult males 200 , literate males 40 , employed males 188 , literate employed males 36"

Solution : A = male is literate

B ≡ male is unemployed

U	nemp	oloved B		β	employe	ed TOTAL	
literate .	A	(AB) =	4	(Aβ) =	36	(A) = 40	
	α	$(\alpha B) =$	8	(αβ) =	152	$(\alpha) = 160$	
TO	TAL	(B) =	12	(β) =	188	N = 200	
Q =	(AB) (AB)	$(\alpha\beta) - (A)$ $(\alpha\beta) + (A)$	Αβ) (αB) Αβ) (αB)			ROUGH WORK	
=	(4)(152) + (3	6)(8)			LOG CALC.	
=	608	- 288				<u>- 2. 9523</u>	
	608	+ 288				AL 1. 5528	
=	320	_	= 0.35	72		0. 0002	
	896				I		

Comment: there is significant amount of positive association between literacy and unemployment

THEORY OF ATTRIBUTES

- 11. Find Yule's coefficient of association between literacy and employment using the following information
 - Total number of adults = 1000
 - Total number of literates = 129
 - Total number of unemployed = 139
 - Total number of literate unemployed = 82
 - Interpret the result

Interpr	et the result			Q	=	$(AB)(\alpha\beta) - (A\beta)(\alpha B)$
						$(AB)(\alpha\beta) + (A\beta)(\alpha B)$
					=	(47)(57) – (82)(814)
Solutio	n: A ≡ <u>adultis</u>	<u>s literate</u>				(47)(57) + (82)(814)
	$B \equiv adult is$	s employed			=	2679 – 66748
emp	bloved B	$_{\beta}$ unemplo	oved TOTAL			2679 + 66748
literate A	(AB) = 47	(Aβ) = 82	(A) = 129		=	- 64069
α	$(\alpha B) = 814$	$(\alpha\beta) = 57$	$(\alpha) = 871$			69427
TOTAL	(B) = 861	(β) = 139	N = 1000		=	- 0.9228

ROUGH WORK

LOG CALC.	
4. 8067	
- 4.8416	
AL 1. 9651	
0.9228	

Comment : there is high degree of negative association between

literacy and employment

JKSC - FYJC 2018 - 19 - PAPER - II

THEORY OF ATTRIBUTES

11. Find Yule's coefficient of association between intelligence of father and daughter

intelligent father with intelligent daughters	=	125
intelligent father with non intelligent daughters	=	40
non intelligent father with intelligent daughters	=	45
non intelligent father with non intelligent daughters	=	290

Solution :	А	≡	intelligent father

 $B \equiv intelligent daughter$

	В		β		TOTAL
А	(AB) =	125	(Aβ) =	40	(A) = 165
α	$(\alpha B) =$	45	(αβ) =	290	(α) = 335
TOTAL	(B) =	170	(β) =	330	N = 500

Q	=	$(AB)(\alpha\beta) - (A\beta)(\alpha B)$		ROUG
		$(AB)(\alpha\beta) + (A\beta)(\alpha B)$		
	=	(125)(290) - (40)(45)		
		(125)(290) + (40)(45)		LOG CALC.
				3. 5372
	=	36250 - 1800		- 3. 5804
		36250 + 1800		AL 1. 9568
				0. 9053
	=	34450		
		38050		
	=	0.9053	I	

there is high degree of positive association between Comment :

ROUGH WORK

intelligence of father and daughters

12. 400 candidates of both sex appeared for an examination . The boys outnumbered girls by 15% of the total . The number bof candidates who passed the examination exceeded the number of candidates who failed by 240. Equal number of boys and girls failed in the examination . Prepare a 2 x 2 table and find the coefficient of association . Comment on the result

Solution	: ו	А	=	candidate is a boy								
		В	=	СС	andid	ate	ра	issed	the	exc	amin	ation
The boy	/s o	utr	num	nbe	ered	girls	by	15%	of	he t	otal	_
(A)	+	(α)	=	400							
(A)	-	(α)	=	60	_						
2(A)				=	460		:.	(A)	=	230		

candidates who passed the examination exceeded the number

of can	didc	ates	who	failed	by 2	40		
(B)	+	(β)	=	400				
(B)	_	(β)	=	240				
2(B)			=	640	.:.	(A)	=	320

THEORY OF ATTRIBUTES

passed 🔶 B			β		TOTAL		
Boy A	(AB) =	190	(Aβ) =	40	(A) = 230		
α	$(\alpha B) =$	130	(αβ) =	40	(α) = 170		
TOTAL	(B) =	320	(β) =	80	N = 400		

Q	=	$\frac{(AB)(\alpha\beta) - (A\beta)(\alpha B)}{}$
		$(AB)(\alpha\beta) + (A\beta)(\alpha B)$
	=	(190)(40) - (40)(130)
		(190)(40) + (40)(130)
	=	7600 – 5200
		7600 + 5200
		2400
	=	
		12800
	=	0.1875

ROUGH WORK

Comment: there is low degree of positive association between

being a boy and passing the examination

Q SET 3 - CONSISTENCY OF DATA

01. Out of 110 students interviewed for their liking in music 48 students liked Indian music , 73 liked Western music and 20 liked both . Find the number of students who did not like music ans : 9

Solution : $A \equiv$ student likes Indian Music

 $B \equiv$ student likes western music

wes	tern B		β		TOTAL		
Indian A	(AB) =	20	(Aβ) =	28	(A) = 48		
α	(αB) =	53	(αβ) =	9	(α) = 62		
TOTAL	(B) =	73	(β) =	37	N = 110		

number of students who did not like music = $(\alpha\beta)$

= 9

THEORY OF ATTRIBUTES

02. in a group of 200 persons , 142 read Marathi newspaper , 108 read English newspaper and 85 read both the papers . Find the number of persons reading

i) only Marathi newspaper
 ii) newspaper
 iii) no newspaper

B = person reads English newspaper

ans: 57; 80; 35

Solution : $A \equiv$ person reads Marathi newspaper

Eng	lish B		β		TOTAL	
Marathi A	(AB) =	85	(Aβ) =	57	(A) = 142	
α	$(\alpha B) =$	23	(αβ) =	35	(α) = 58	
TOTAL	(B) =	108	(β) =	92	N = 200	

Hence number of persons reading

- 1) Only Marathi newspaper = $(A\beta) = 57$
- 2) Newspaper in only one language
 - = $(A\beta)$ + (αB)
 - = 57 + 23 = 80
- 3) No newspaper = $(\alpha\beta) = 35$

- THEORY OF ATTRIBUTES
- 03. 500 students appeared for an examination of whom 275 were boys . Out of 350 successful students , 150 were boys . Find number of

i) successful girls ii) unsuccessful girls iii)unsuccessful boys
 ans : 200 ; 25 ; 125

Solution : $A \equiv$ student is a boy

 $B \equiv$ student successfully passed

	SUC	cessful B	β	TOTAL
Воу	А	(AB) = 150	(Aβ) = 125	(A) = 275
Girl	α	$(\alpha B) = 200$	$(\alpha\beta) = 25$	(α) = 225
	TOTAL	(B) = 350	(β) = 150	N = 500

- 1) successful girls = (αB) = 200
- 2) unsuccessful girls = $(\alpha\beta)$ = 25
- 3) unsuccessful boys = $(A\beta)$ = 125

04. Of 598 men in a locality exposed to a particular disease , 147 in all were attacked . Of 598 men 137 were inoculated and of those only 14 were attacked . Find the number of persons not inoculated but not attacked

ans : 328

- Solution : A = person is attacked by a disease
 - B = person is inoculated

inoculated B		β	TOTAL
Attacked A	(AB) = 14	(Aβ) = 133	(A) = 147
α	$(\alpha B) = 123$	$(\alpha\beta) = 328$	$(\alpha) = 451$
TOTAL	(B) = 137	$(\beta) = 461$	N = 598

number of persons not inoculated but not attacked

 $= (\alpha\beta)$

= 328

Solution : A = employee is a male

05. In a group of 100 employees in a firm , there were 80 males . The number of married employees was 60 among whom 30 were males . Examine whether the information is correct

		B ≡ .	employ	ee is married	
	mc	arried B		β	TOTAL
Male	А	(AB) =	30	(Aβ) = 50	(A) = 80
	α	(αB) =	30	$(\alpha\beta) = -10$	(α) = 20
T	OTAL	(B) =	60	(β) = 40	N = 100

Comment : Since $(\alpha\beta) < 0$, information is incorrect

06. The data below , gives the information of jobbies of a group of 100 girls in a school . 20 girls liked singing , 35 enjoyed painting and 12 girls favored both the hobbies . Are the data consistent

Solution :
$$A = \underline{girl \ likes \ singing}}{B = \underline{girl \ likes \ painting}}$$

painting $B = \frac{\beta}{12}$ TOTAL
Singing $A = (AB) = 12$ $(A\beta) = 8$ $(A) =$

α	(αB) =	23	(αβ) =	57	(α) =	80	
TOTAL	(B) =	35	(β) =	65	N =	100	

THEORY OF ATTRIBUTES

07. In a report of consumer's preference it was given that out of 500 persons surveyed, 410 preferred variety A, 380 preferred variety B and 270 persons showed liking for both. Is there any consistency in the data

Solution :
$$A \equiv \text{consumer preferred variety } A$$

	D	þ	TOTAL
A	(AB) = 270	$(A\beta) = 140$	(A) = 410
α	$(\alpha B) = 110$	$(\alpha\beta) = -20$	$(\alpha) = 90$
TOTAL	(B) = 380	(β) = 120	N = 500

B = consumer preferred variety B

ß

τοται

Comment :	Since	(αβ) <	< 0,	information	is incorrect
-----------	-------	--------	------	-------------	--------------

- 08. 300 students appeared for oral and written test . 180 passed both the test . 90 students failed in both the test . 60 passed in oral but failed in written . Show that the information obtained must be incorrect
 - Solution : $A \equiv$ student passed in oral test

	Writ	ten B	β	TOTAL
oral	А	(AB) = 180	(Aβ) = 60	(A) = 240
	α	$(\alpha B) = -30$	$(\alpha\beta) = 90$	$(\alpha) = 60$
	TOTAL	(B) = 150	(β) = 150	N = 300

B = student passed in written test

Comment : Since $(\alpha\beta) < 0$, information is incorrect

- 16 -

20

JKSC - FYJC 2018 - 19 - PAPER - II

09. the data below relate to sample survey of 200 persons in a

village

- Number of literate employed persons = 94
- Number of literate unemployed persons = 84
- Number of employed persons = 128
- Show that the data are inconsistent

Solution : A = person is literate

 $B \equiv \text{person is employed}$

employed B		β	TOTAL
literate A	(AB) = 94	(Aβ) = 84	(A) = 178
α	$(\alpha B) = 34$	$(\alpha\beta) = -12$	(α) = 22
TOTAL	(B) = 128	(β) = 72	N = 200

Comment : Since $(\alpha\beta) < 0$, information is incorrect

CONTINGENCY TABLE FOR THREE ATTRIBUTES

ATTRIBUTE	С	γ	TOTAL
В	(ABC)	(ΑΒγ)	(AB)
Α β	(AβC)	(Αβγ)	(Αβ)
TOTAL		[Αγ]	(A)
В	(αBC) —	(αΒγ) —	(αB) —
α β	(αβC) —	(αβγ)	(αβ)
TOTAL	— (αC)	- (αγ)	— (α)
В	(BC) ←	(Bγ) ←	(B) 🗲
β	(βC) ←	(βγ) <	(β) ←
TOTAL	→ (C)	\downarrow (γ)	→ (N)

Q SET 4 - THREE ATTRIBUTE TABLE

01. (ABC) = 15; (AB
$$\gamma$$
) = 25, (A β C) = 22; (α BC) = 31; (A $\beta\gamma$) = 8; (α B γ)
= 12; ($\alpha\beta$ C) = 15; ($\alpha\beta\gamma$) = 9

02. (ABC) = 25; $(AB\gamma) = 15$, $(A\beta C) = 18$; $(\alpha BC) = 23$; $(A\beta\gamma) = 13$; $(\alpha B\gamma) = 28$; $(\alpha\beta C) = 21$; $(\alpha\beta\gamma) = 30$

ATTRIBUTE	С	γ	TOTAL
В	(ABC) = 15	(ABγ) = 25	(AB) = 40
Α β	(AβC) = 22	(Αβγ) = 8	(Aβ) = 30
TOTAL	(AC) = 37	(Ay) = 33	(A) = 70
В	$(\alpha BC) = 31$	$(\alpha B\gamma) = 12$	$(\alpha B) = 43$
α β	$(\alpha\beta C) = 15$	(αβγ) = 9	$(\alpha\beta) = 24$
TOTAL	$(\alpha C) = 46$	(αγ) = 21	(α) = 67
В	(BC) = 46	(Bγ) = 37	(B) = 83
β	$(\beta C) = 37$	(βγ) = 17	$(\beta) = 54$
TOTAL	(C) = 83	(γ) = 54	(N) = 137

ATTRIBUTE	С	γ	TOTAL
В	(ABC) = 25	(ABγ) = 15	(AB) = 40
Α β	(AβC) = 18	$(A\beta\gamma) = 13$	$(A\beta) = 31$
TOTAL	(AC) = 43	(Ay) = 28	(A) = 71
В	(αBC) = 23	(αBγ) = 28	$(\alpha B) = 51$
α β	$(\alpha\beta C) = 21$	(αβγ) = 30	$(\alpha\beta) = 51$
TOTAL	$(\alpha C) = 44$	(αγ) = 58	(α) = 102
В	(BC) = 48	(By) = 43	(B) = 91
β	$(\beta C) = 39$	(βγ) = 43	(β) = 82
TOTAL	(C) = 87	(γ) = 86	(N) = 173

- **03.** (ABC) = 50 ; (AB γ) = 72 , (A β C) = 33 ; (α BC) = 22 ;(A $\beta\gamma$) = 21 ; (α B γ) = 30 ; ($\alpha\beta$ C) = 10 ; ($\alpha\beta\gamma$) = 16
- **04.** N = 800 ; (A) = 224 ; (B)= 301 ; (C) = 150 ; (AB) = 125 ; (AC) = 72 ; (BC)= 60 ; (ABC) = 32

ATTRIBUTE	С	γ	TOTAL
В	(ABC) = 50	(ABγ) = 72	(AB) = 122
Α β	(AβC) = 33	(Αβγ) = 21	(Aβ) = 54
TOTAL	(AC) = 83	(Ay) = 93	(A) = 176
В	$(\alpha BC) = 22$	(αBγ) = 30	$(\alpha B) = 52$
α β	$(\alpha\beta C) = 10$	(αβγ) = 16	(αβ) = 26
TOTAL	$(\alpha C) = 32$	(αγ) = 46	(α) = 78
В	(BC) = 72	(By) = 102	(B) = 174
β	$(\beta C) = 43$	(βγ) = 37	(β) = 80
TOTAL	(C) = 115	(γ) = 139	(N) = 254

ATTRIBUTE	С	γ	TOTAL
В	(ABC) = 32	(AB _γ) = 93	(AB) = 125
Α β	$(A\beta C) = 40$	(Αβγ) = 59	(Aβ) = 99
TOTAL	(AC) = 72	(Aγ) = 152	(A) = 224
В	(αBC) = 28	$(\alpha B\gamma) = 148$	(aB) = 176
α β	$(\alpha\beta C) = 50$	(αβγ) = 350	$(\alpha\beta) = 400$
TOTAL	(αC) = 78	(αγ) = 498	(α) = 576
В	(BC) = 60	(Bγ) = 241	(B) = 301
β	$(\beta C) = 90$	(βγ) = 409	(β) = 499
TOTAL	(C) = 150	(γ) = 650	(N) = 800

n	5	
v	•	٠

- A = player plays cricket
- $B \equiv$ player plays hockey
- A ≡ player plays football

240 players	Ν	=	240
105 play cricket	(A)	=	105
126 play hockey	(B)	=	126
75 play foot ball	(C)	=	75
24 play both cricket and hockey	(AB)	=	24
30 play both cricket and football	(AC)	=	30
21 play hockey and football	(BC)	=	21
9 play all three games	(ABC) =	9
Find the players playing			
a) only two games			
b) at least two games			
c) only one game			

ATTRIBUTE	С	γ	TOTAL
В	(ABC) = 9	$(AB\gamma) = 15$	(AB) = 24
Α β	(AβC) = 21	(Αβγ) = 60	$(A\beta) = 81$
TOTAL	(AC) = 30	(Aγ) = 75	(A) = 105
В	$(\alpha BC) = 12$	(αBγ) = 90	(αB) = 102
α β	$(\alpha\beta C) = 33$	(αβγ) = Ο	(αβ) = 33
TOTAL	(αC) = 45	(αγ) = 90	(α) = 135
В	(BC) = 21	(Bγ) = 105	(B) = 126
β	$(\beta C) = 54$	$(\beta\gamma) = 60$	$(\beta) = 114$
TOTAL	(C) = 75	(γ) = 165	(N) = 240

a) players playing only two games = $(AB\gamma) + (A\beta C) + (\alpha BC)$ = 15 + 21 + 12 = 48b) players playing at least two games = $(AB\gamma) + (A\beta C) + (\alpha BC) + (ABC)$ = 15 + 21 + 12 + 9 = 57c) players playing only one game = $(A\beta\gamma) + (\alpha\beta\gamma) + (\alpha\beta C)$ = 60 + 90 + 33 = 183 A = student failed in Marathi

B = student failed in English

C = student failed in Hindi

06.	800 st	tudents	N = 800
	220 fc	ailed in Marathi	(A)= 220
	300 fo	ailed in English	(B) = 300
	150 fc	ailed in Hindi	(C)= 150
	125 fc	ailed in both Marathi and English	<u>(AB) = 125</u>
	70 fai	led in both Marathi and Hindi	(AC) = 70
	60 fai	led in both English and Hindi	(BC) = 60
	30 fai	led in all three exams	(ABC) = 30
	Find r	number of students who failed in	
	a)	two languages	
	b)	only one language	
	c)	atleast one language	

THEORY OF ATTRIBUTES

ATTRIBUTE	С	γ	TOTAL
В	(ABC) = 30	(ABγ) = 95	(AB) = 125
Α β	$(A\beta C) = 40$	(Αβγ) = 55	$(A\beta) = 95$
TOTAL	(AC) = 70	(Aγ) = 150	(A) = 220
В	(αBC) = 30	(αBγ) = 145	(αB) = 175
α β	$(\alpha\beta C) = 50$	(αβγ) = 355	$(\alpha\beta) = 405$
TOTAL	(αC) = 80	(αγ) = 500	(α) = 580
В	(BC) = 60	(By) = 240	(B) = 300
β	$(\beta C) = 90$	$(\beta\gamma) = 410$	(β) = 500
TOTAL	(C) = 150	(γ) = 650	(N) = 800

a) students failing in two languages

= $(AB\gamma)$ + $(A\beta C)$ + (αBC)

= 95 + 40 + 30 = 165

b) students failing in only one language

= $(A\beta\gamma)$ + $(\alpha B\gamma)$ + $(\alpha\beta C)$

= 55 + 145 + 50 = 250

c) students failing in at least one language

= N - ($\alpha\beta\gamma$) = 800 - 355 = 445

07. –: 170 women interviewed

-: 95 from Pune and rest from outskirts

-: amongst the married women from Pune ;

25 were experienced and 10 were inexperienced

-: from outskirts of Pune ;

the corresponding numbers were 8 & 60

-:5 women were unmarried ,inexperienced , staying in outskirts

-: inexperienced women were 120

Hence find

Number of women from Pune who were unmarried & experienced

SOLUTION

 $A \equiv$ woman is from Pune , $B \equiv$ woman is married

```
C \equiv woman is experienced
```

N = 170

(A) = 95, (ABC) = 25, (AB γ) = 10, (α BC) = 8, (α B γ) = 60,

 $(\alpha\beta\gamma) = 5$, $(\gamma) = 120$

ATTRIBUTE	С	γ	TOTAL
В	(ABC) = 25	(ABγ) = 10	(AB) = 35
Α β	(AβC) = 15	$(A\beta\gamma) = 45$	$(A\beta) = 60$
TOTAL	(AC) = 40	(Aγ) = 55	(A) = 95
В	(αBC) = 8	(αBγ) = 60	$(\alpha B) = 68$
α β	$(\alpha\beta C) = 2$	$(\alpha\beta\gamma) = 5$	(αβ) = 7
TOTAL	$(\alpha C) = 10$	(αγ) = 65	(α) = 75
В	(BC) = 33	(Bγ) = 70	(B) = 103
β	$(\beta C) = 17$	(βγ) = 50	(β) = 67
TOTAL	(C) = 50	$(\gamma) = 120$	(N) = 170

Number of women from Pune who were unmarried and

experienced = $(A\beta C) = 15$

THE B	ELOW Q	'S CAN BE S	OLVED WI	тнс	OUT TABLE	US	ING RE	ELA	TIONS
08.	$(ABC) = 50$; $(AB\gamma) = 75$, $(A\beta C) = 40$; $(\alpha BC) = 30$; $(A\beta\gamma) = 20$; $(\alpha B\gamma) = 30$; $(\alpha\beta C) = 15$; $(\alpha\beta\gamma) = 10$								
	Find (B),(AC),	(αβ)						
	SOLUTIO	ЛС							
	\checkmark	(ABC) +	(AβC)	=	(AC)	÷	(AC)	=	90
	\checkmark	(ABC) +	(ΑΒγ)	=	(AB)	÷	(AB)	=	125
	\checkmark	(αBC) +	(αΒγ)	=	(αB)	÷	(aB)	=	60
	\checkmark	(αβC) +	(αβγ)	=	(αβ)	÷	(αβ)	=	25
	\checkmark	(AB) + (α	B) =	(B)		(B)	=	18	5

09. (ABC) = 50 ; (AB
$$\gamma$$
) = 72 , (A β C) = 33 ; (α BC) = 22 ;(A $\beta\gamma$) = 21 ;
(α B γ) = 30 ; ($\alpha\beta$ C) = 10 ; ($\alpha\beta\gamma$) = 16

Find (A) , (AB) , (Aβ) , (AC) & (BC)

SOLUTION

$$\checkmark (ABC) + (AB\gamma) = (AB) \qquad \therefore (AB) = 122$$

$$\checkmark (A\betaC) + (A\beta\gamma) = (A\beta) \qquad \therefore (A\beta) = 54$$

$$\checkmark (ABC) + (A\betaC) = (AC) \qquad \therefore (AC) = 83$$

$$\checkmark (ABC) + (\alpha BC) = (BC) \qquad \therefore (BC) = 72$$

$$\checkmark (AB) + (A\beta) = (A) \qquad \therefore (A) = 176$$

THEORY OF ATTRIBUTES

10.	N = 100; (A) =	= 65 ; (B)= 55 ; (C) = 45 ; (A	(B) = 25 ; (AC) = 20 ;
	(BC)= 10 ; (ABC)) = 8		
	FIND : (ABγ),(Αγ),(αΒ), (β	C)	
	SOLUTION			
\checkmark	(ABC) + (ABγ) = (AB)		
	8 + (ABγ)	= 25	(ABγ) =	17
\checkmark	(AC) + (Aγ)	= (A)		
	20 + (Ay)	= 65	(Aγ) =	45
\checkmark	$(AB) + (\alpha B)$	= (B)		
	$25 + (\alpha B)$	= 55	(αB) =	30
~	(BC) + (βC)	= (C)		
	10 + (βC)	= 45	(βC) =	35